Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Chu-Yi Yu, ${ }^{\text {a }}$ * Sheng-Jiao Yan ${ }^{\text {a,b }}$ and Zhi-Tang Huang ${ }^{\text {a* }}$

${ }^{\text {a }}$ Beijing National Laboratory for Molecular Science (BNLMS), Laboratory for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China, and ${ }^{\mathbf{b}}$ Graduate University of the Chinese Academy of Sciences, Beijing 100080, People's Republic of China

Correspondence e-mail: yucy@iccas.ac.cn, huangzt@public.bta.net.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.139$
Data-to-parameter ratio $=13.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Ethyl 8-benzoyl-5-oxo-7-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-6carboxylate

The geometric parameters for the title compound, $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$, are normal. The molecules form dimeric associations via inversion-generated pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

5-Oxoimidazo[1,2-a]pyridine derivatives are potentially biologically active compounds. Heterocyclic ketene aminals (HKAs) are useful intermediates for the preparation of these compounds. We have reported some examples of HKAs reacting with α, β-unsaturated compounds to yield 5-oxo-imidazo[1,2-a]pyridine derivatives (Huang \& Liu, 1986). Compound (I) (Fig. 1) (Table 1) resulted from a Michael addition reaction (see Experimental). A ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ nuclear Overhauser effect experiment failed to provide unambiguous evidence for the determination of a Z or E configuration about the $\mathrm{C} 1=\mathrm{C} 16$ double bond and its crystal structure was determined to resolve this ambiguity.

Compound (I) is chiral (in the molecule of the arbitrarily chosen asymmetric unit, C 5 has an R configuration and C 9 has an S configuration), but crystal symmetry generates a racemic mixture of the two enantiomers.

The six-membered C1/N2/C4/C5/C9/C16 ring in (I) adopts a twist boat conformation; the torsion angle $\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9$ is $-34.7(3)^{\circ}$ and $\mathrm{N} 2-\mathrm{C} 1-$ and $\mathrm{C} 16-\mathrm{C} 9$ is $3.2(2)^{\circ}$. The H5$\mathrm{C} 5-\mathrm{C} 9-\mathrm{H} 9$ dihedral angle of 74° is consistent with the value (64.1 ${ }^{\circ}$) calculated by application of the Karplus equation on the basis of the NMR coupling constant of 1.9 Hz for these H atoms.

The $\mathrm{N} 1-\mathrm{H} 1$ group participates in a bifurcated $\mathrm{N}-$ $\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ interaction: an intramolecular hydrogen bond to O4 (Table 2) and an intermolecular bond to a second, inversion symmetry-generated, O 4 species in an adjacent molecule (bond angle sum about $\mathrm{H} 1=350^{\circ}$) (Fig. 2). The molecular packing is shown in Fig. 3.

Figure 1
A view of (I), showing 40\% displacement ellipsoids (arbitrary spheres for the H atoms). All H atoms except $\mathrm{H} 1, \mathrm{H} 5$ and H 9 have been omitted for clarity. The dashed line indicates a hydrogen bond.

Experimental

A solution of 2-(benzoylmethylene)imidazolidine (1 mmol) (Huang \& Wang, 1992) and diethyl 2-benzylidene malonate (1 mmol) derived from benzaldehyde (Breukelman et al., 1981) in dioxane (10 ml) was stirred at 363 K for 12 h and then refluxed for 36 h . After removal of the solvent, the desired product was separated by flash chromatography (ethyl acetate-petroleum ether, 1.6:1) to yield the title compound, (I), in 71% yield (m.p. 440 K). Crystals of (I) were recrystallised from ethyl acetate-petroleum ether (ca 1:6).

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=390.43$
Monoclinic, $P 2_{{ }_{1}} / c$
$a=9.644$ (3) A
$b=11.937$ (3) \AA
$c=17.998$ (5) \AA
$\beta=90.691(5)^{\circ}$
$V=2071.8(10) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1998)
$T_{\text {min }}=0.823, T_{\text {max }}=1.00$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.139$
$S=1.06$
3660 reflections
263 parameters
H-atom parameters constrained

$Z=4$

$D_{x}=1.252 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.30 \times 0.24 \times 0.18 \mathrm{~mm}$

Figure 2
The dimeric association of molecules of (I). Dashed lines indicate hydrogen bonds. [Symmetry code: (i) $1-x, 1-y,-z$.]

Figure 3
The packing in (I), viewed down [100], with hydrogen bonds indicated by dashed lines. All C-bound H atoms have been omitted for clarity.

Table 1
Selected bond lengths (\AA).

$\mathrm{C} 1-\mathrm{N} 1$	$1.329(3)$	$\mathrm{C} 1-\mathrm{C} 16$	$1.378(3)$
$\mathrm{C} 1-\mathrm{N} 2$	$1.390(3)$		

organic papers

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 \cdots O4	0.86	2.20	$2.720(3)$	119
N1-H1 $\cdots 4^{\mathrm{i}}$	0.86	2.19	$2.854(3)$	134

Symmetry code: (i) $-x+1,-y+1,-z$.

All H atoms were placed in geometrically idealized positions (C -$\mathrm{H}=0.95-1.00 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier), or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (methyl carrier).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Dr Hong-Geng Wang of Nankai University collected the intensity data.

References

Breukelman, S. P., Meakins, G. D. \& Roe, A. M. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 1627-1636.
Bruker (1998). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Huang, Z. T. \& Liu, Z. R. (1986). Heterocycles, 24, 2247-2254
Huang, Z. T. \& Wang, M. X. (1992). Synthesis, 12, 1273-1276.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

